优化与算法资料

本文主要介绍优化与算法资料 方法和在新技术下所面对的“挑战”,方便大家深入理解优化与算法资料 过程。本文也将分享优化与算法资料 所遇到的问题和应对策略,怎么解决怎么做的问题。
通过深入本文可以理解代码原理,进行代码文档的下载,也可以查看相应 Demo 部署效果。

1 正交多项式的定义

1.1 正交多项式定义

定义: 一个多项式序列 ${ {p_n}(x)} _{n = 0}^infty $,其阶数为 ([{p_n}(x)] = n) ,对于每一个 (n),这个多项式序列在开区间 ((a,b)) 上关于权函数 (w(x)) 正交,如果:

[int_a^b {w(x){p_m}(x){p_n}(x)dx = } {h_n}{delta _{mn}} ]

这里 ({delta _{mn}})为狄拉克函数,且 (h_n) 为常数。

这里的权函数 (w(x)) 在区间 ((a,b)) 是连续且正的以使得下式存在:

[{mu _n}{rm{ = }}int_a^b {w(x){x^n}dx,{rm{ }}n = 0,1,2, cdots } ]

则多项式 (f) 和多项式 (g) 的内积定义为:

[leftlangle {f,g} rightrangle : = int_a^b {w(x)f(x)g(x)dx} ]

区间 ((a,b)) 称为正交区间,正交区间未必是有限区间。

例1 三角函数的正交性
对于三角函数序列 (1,sin(theta),cos(theta),sin(2theta),cos(2theta),…,cos(ntheta))(n=1,2,…,infty),他们在区间 ((0,2pi)) 的正交性为:

[int_0^{2pi } {sin (ntheta )cos (mtheta )dtheta } = {delta _{mn}} ]

图1展现了 (sin(theta))(cos(theta)) 在区间 ((0,2pi)) 上的正交性,图中蓝线为 (sin(theta)*cos(theta)) 的值,对其积分就相当于求图中阴影部分的面积,很明显,阴影部分的面积加上符号后求和为0。

优化与算法
图1. 三角函数的正交性示意图

1.2 施密特正交化(Schmidt orthogonalization)

施密特正交化方法是将一组线性无关的向量组正交化的方法,对正交化后的向量组进行标准化处理,可进一步得到一组标准正交基。施密特正交化的处理步骤如下:

[begin{array}{l} {beta _1} = {alpha _1} \ {beta _2} = {alpha _2} – frac{{leftlangle {{alpha _2},{beta _1}} rightrangle }}{{leftlangle {{beta _1},{beta _1}} rightrangle }}{beta _1} \ cdots \ {beta _n} = {alpha _n} – frac{{leftlangle {{alpha _n},{beta _1}} rightrangle }}{{leftlangle {{beta _1},{beta _1}} rightrangle }}{beta _1} – frac{{leftlangle {{alpha _n},{beta _2}} rightrangle }}{{leftlangle {{beta _2},{beta _2}} rightrangle }}{beta _2} – cdots – frac{{leftlangle {{alpha _n},{beta _{n – 1}}} rightrangle }}{{leftlangle {{beta _{n – 1}},{beta _{n – 1}}} rightrangle }}{beta _{n – 1}} \ end{array} ]

例子:将三维空间中的一组线性无关向量 ({a,b,c}) 用施密特正交化方法处理得到正交向量组 ({x,y,z})

步骤如下:

[begin{array}{l} x = a \ y = b – frac{{leftlangle {b,x} rightrangle }}{{leftlangle {x,x} rightrangle }}x = frac{{left| b right|cos (theta )}}{{left| a right|}}a \ z = c – frac{{leftlangle {c,x} rightrangle }}{{leftlangle {x,x} rightrangle }}x – frac{{leftlangle {c,y} rightrangle }}{{leftlangle {y,y} rightrangle }}y \ end{array}]

三维空间中施密特正交化方法的几何描述如图2所示

优化与算法
图2. 施密特正交化几何示意图

2 经典正交多项式

经典的正交多项式有雅克比多项式,切比雪夫多项式,勒让德多项式,拉盖尔多项式,伯恩斯坦多项式,球谐多项式等。

2.1 雅克比多项式

雅克比多项式是定义在 ((-1,1)) 上,关于权函数 ((1-x)^alpha(1+x)^beta) 正交的多项式,其中 (alpha,beta >-1)

雅克比多项式的表达式为:
优化与算法
优化与算法
为伽马函数(gamma function)。

雅克比多项式的递推公式为:
优化与算法

雅克比多项式的正交性:

[begin{array}{l} int_{ – 1}^1 {{{(1 – x)}^alpha }{{(1 + x)}^beta }P_m^{(alpha ,beta )}(x)P_n^{(alpha ,beta )}(x)dx} \ = frac{{{2^{alpha + beta + 1}}}}{{2n + alpha + beta + 1}}frac{{Gamma (alpha + n + 1)Gamma (beta + n + 1)}}{{n!Gamma (alpha + beta + n + 1)}}{delta _{mn}} \ end{array}]

优化与算法

2.2 勒让德多项式

勒让德多项式是定义在区间 ((-1,1)) 上关于权函数1正交的多项式。勒让德多项式实际上是雅克比多项式在 (alpha=beta=0) 时的特殊情况。

勒让德多项式的表达式为:

[{P_n}(x) = frac{1}{{{2^n}n!}}frac{{{d^n}}}{{d{x^n}}}left[ {{{({x^2} – 1)}^n}} right] ]

勒让德多项式的递推公式为:

[(n + 1){P_{n + 1}}(x) = (2n + 1)x{P_n}(x) – n{P_{n – 1}}(x) ]

勒让德多项式的正交性:

[int_{ – 1}^1 {{P_m}(x){P_n}(x)dx} = frac{2}{{2n{rm{ + }}1}}{delta _{mn}} ]

前6阶勒让德多项式:

[{P_0}(x) = 1 ]

[{P_1}(x) = x ]

[{P_2}(x) = frac{3}{2}{x^2} – frac{1}{2} ]

[{P_3}(x) = frac{5}{2}{x^3} – frac{3}{2}x ]

[{P_4}(x) = frac{{35}}{8}{x^4} – frac{{15}}{4}{x^2} + frac{3}{8} ]

[{P_5}(x) = frac{{63}}{8}{x^5} – frac{{35}}{4}{x^3} + frac{{15}}{8}x ]

[{P_6}(x) = frac{{231}}{{16}}{x^6} – frac{{315}}{{16}}{x^4} + frac{{105}}{{16}}{x^2} – frac{5}{{16}} ]

前6阶多项式图像:

优化与算法
图3. 前6项勒让德多项式
优化与算法

2.3 切比雪夫多项式

切比雪夫多项式是定义在区间 ((-1,1)) 上关于权函数 (frac{1}{{sqrt {1 – {x^2}} }}) 正交的多项式。

2.3.1 第一类切比雪夫多项式

第一类切比雪夫多项式的表达式为:

[{T_n}(x) = cos (ntheta ) ]

(x=cos(theta)),则 ({T_n}(x) = cos (narccos (x)))
第一类切比雪夫多项式的正交性为:

[int_{ – 1}^1 {frac{1}{{sqrt {1 – {x^2}} }}{T_m}(x){T_n}(x)dx = left{ {begin{array}{*{20}{c}} {0quad{rm{ }}m ne n} \ {pi quad{rm{ }}n = m = 0} \ {frac{pi }{2}{rm{ }}quad n = m ne 0} \ end{array}} right.} ]

第一类切比雪夫多项式的递推公式:

[{T_{n + 1}}(x) = 2x{T_n}(x) – {T_{n – 1}}(x) ]

第一类切比雪夫多项式的前6项:

[{T_0}(x) = 1 ]

[{T_1}(x) = x ]

[{T_2}(x) = 2{x^2} – 1 ]

[{T_3}(x) = 4{x^3} – 3x ]

[{T_4}(x) = 8{x^4} – 8{x^2} + 1 ]

[{T_5}(x) = 16{x^5} – 20{x^3} + 5x ]

[{T_6}(x) = 32{x^6} – 48{x^4} + 18{x^2} – 1 ]

第一类切比雪夫多项式的图像

2.3.2 第二类切比雪夫多项式

第二类切比雪夫多项式的表达式为:

[{U_n}(x) = frac{{sin [(n + 1)theta ]}}{{sin theta }} ]

第二类切比雪夫多项式的正交性为:

[int_{ – 1}^1 {sqrt {1 – {x^2}} {U_m}(x){U_n}(x)dx = left{ {begin{array}{*{20}{c}} {0m ne n} \ {frac{pi }{2}n = m} \ end{array}} right.} ]

第二类切比雪夫多项式的递推公式:

[{U_{n + 1}}(x) = 2x{U_n}(x) – {U_{n – 1}}(x) ]

第二类切比雪夫多项式的前6项:

[{U_0}(x) = 1 ]

[{U_1}(x) = 2x ]

[{U_2}(x) = 4{x^2} – 1 ]

[{U_3}(x) = 8{x^3} – 4x ]

[{U_4}(x) = 16{x^4} – 12{x^2} + 1 ]

[{U_5}(x) = 32{x^5} – 32{x^3} + 6x ]

[{U_6}(x) = 64{x^6} – 80{x^4} + 24{x^2} – 1 ]

第二类切比雪夫多项式的图像:

优化与算法
图4. 前6项切比雪夫多项式
优化与算法

2.4 拉盖尔多项式

拉盖尔多项式是定义在区间 ((0,+infty)) 上关于权函数 (e^{-x}x^alpha) 正交的多项式,

拉盖尔多项式的正交关系:

[int_0^{ + infty } {{x^alpha }{e^{ – x}}L_m^{(alpha )}(x)L_n^{(alpha )}(x)dx} = frac{{left( {n + alpha } right)!}}{{n!}}{delta _{mn}} ]

拉盖尔多项式的递推关系((alpha =0)):

[{L_{n + 1}}(x) = frac{{(2n + 1 – x){L_n}(x) – n{L_{n – 1}}(x)}}{{n + 1}} ]

前6项拉盖尔多项式((alpha =0)):

[{L_0}(x) = 1 ]

[{L_1}(x) = – x + 1 ]

[{L_2}(x) = frac{1}{2}{x^2} – 2x + 1 ]

[{L_3}(x) = – frac{1}{6}{x^3} + frac{3}{2}{x^2} – 3x + 1 ]

[{L_4}(x) = frac{1}{{24}}{x^4} – frac{2}{3}{x^3} + 3{x^2} – 4x + 1 ]

[{L_5}(x) = – frac{1}{{120}}{x^5} + frac{5}{{24}}{x^4} – frac{5}{3}{x^3} + 5{x^2} – 5x + 1 ]

[{L_6}(x) = frac{1}{{720}}{x^6} – frac{1}{{20}}{x^5} + frac{5}{8}{x^4} – frac{{10}}{3}{x^3} + frac{{15}}{2}{x^2} – 6x + 1 ]

前6项拉盖尔多项式的图像:

优化与算法
图5. 前6项拉盖尔多项式
优化与算法

2.5 埃尔米特多项式

埃尔米特多项式是定义在区间 ((-infty,+infty)) 上关于权函数 (e^{-x^2}) 正交的多项式。

埃尔米特多项式分为概率论中的埃尔米特多项式和物理中的埃尔米特多项式,这里只介绍物理学中使用的埃尔米特多项式。

埃尔米特多项式的表达式为:

[{H_n}(x) = {( – 1)^n}{e^{{x^2}}}frac{{{d^n}}}{{d{x^n}}}{e^{ – {x^2}}} ]

埃尔米特多项式的正交性:

[int_{ – infty }^{ + infty } {{H_m}(x){H_n}(x){e^{ – {x^2}}}dx} = sqrt pi {2^n}n!{delta _{mn}} ]

埃尔米特多项式的递推公式:

[{H_{n + 1}}(x) = 2x{H_n}(x) – 2n{H_{n – 1}}(x) ]

前6项埃尔米特多项式为:

[{H_0}(x) = 1 ]

[{H_2}(x) = 2x ]

[{H_3}(x) = 4{x^2} – 2 ]

[{H_4}(x) = 16{x^4} – 48{x^2} + 12 ]

[{H_5}(x) = 32{x^5} – 160{x^3} + 120x ]

[{H_6}(x) = 64{x^6} – 480{x^4} + 720{x^2} – 120 ]

前6项埃尔米特多项式图像:

优化与算法
图6. 前6项埃尔米特多项式
优化与算法

3 正交多项式的应用

正交多项式的应用甚广,包括但不限于数值分析,逼近理论,积分,微分方程,复变函数,随机矩阵理论,编码理论等。

这里仅以一个小的例子来说明正交多项式在函数拟合中的应用。

实验中使用的测试函数为 (y=4x+3x^2+cos(x)+sin(2x)+e^x),定义区间为 ((-2,2)) ,实验比较了多项式展开3项时不同多项式的拟合均方误差(MSE),归一化均方误差(NMSE)。

优化与算法
图7. 不同多项式拟合结果

从拟合结果来看,在展开3项时,埃尔米特多项式的拟合误差较小,其他的多项式拟合误差相当。

测试程序如下:

% 正交多项式测试 clear clc % 采样点数 N = 1000 ;  % 正交多项式阶数 M = 3 ;    % 拟合函数区间为(-2,2) x = linspace(-2,2,N)' ;  % 生成被拟合的函数,包括指数函数,余弦函数,幂函数成分 y =  4*x + 3*x.^2 + cos(x) + exp(x) + sin(2*x);  % 生成幂级数组成的基矩阵 P1 = power_p(x,M) ; % 生成勒让德多项式组成的基矩阵 P2 = legendre_p(N,M) ; % 生成切比雪夫多项式组成的基矩阵 P3 = chebyshev_p(N,M) ; % 生成拉盖尔多项式组成的基矩阵 P4 = laguerre_p(N,M) ; % 生成诶尔米特多项式组成的基矩阵 P5 = hermite_p(N,M) ;  %% 用最小二乘拟合y % c1对应幂级数系数 c1 = P1y ; % c2对应勒让德系数 c2 = P2y ; % c3对应切比雪夫系数 c3 = P3y ; % c4对应拉盖尔系数 c4 = P4y ; % c5对应埃尔米特系数 c5 = P5y ;  %% 求MSE和NMSE MSE_power = norm(y-P1*c1)/N  NMSE_power = norm(y-P1*c1)/norm(y)   MSE_legendre = norm(y-P2*c2)/N  NMSE_legendre = norm(y-P2*c2)/norm(y)   MSE_chebyshev = norm(y-P3*c3)/N  NMSE_chebyshev = norm(y-P3*c3)/norm(y)   MSE_laguerre = norm(y-P4*c4)/N  NMSE_laguerre = norm(y-P4*c4)/norm(y)   MSE_hermite = norm(y-P5*c5)/N  NMSE_hermite = norm(y-P5*c5)/norm(y)   figure(1) plot(x,y,'r-',x,P1*c1,'b-',x,P2*c2,'k-',x,P3*c3,'y-',x,P4*c4,'g-',x,P5*c5,'m-') legend('original','power','legendre','chebyshev','laguerre','hermite')  function [P] = power_p(x,M)  for m = 1:M     P(:,m) = x.^(m-1) ; end end  function [P] = legendre_p(N,NN) % 本函数生成N*M的勒让德基矩阵 s = linspace(-1,1,N)' ; P = zeros(N,NN) ; P(:,1) = ones(N,1) ; P(:,2) = s ; for n = 3 : NN     P(:,n) = ((2 * n - 3) * s .* P(:,n - 1) - (n - 2) * P(:,n - 2)) / ( n -1 ) ; end end  function [P] = chebyshev_p(N,M) % 本函数生成N*M的切比雪夫基矩阵 x = linspace(-1,1,N)' ; P = zeros(N,M) ; P(:,1) = ones(N,1) ; P(:,2) = x ; for k = 3:M     P(:,k) = 2*x.*P(:,k-1) - P(:,k-2) ; end end  function [P] = laguerre_p(N,M) % 本函数生成N*M的拉盖尔基矩阵 x  = linspace(-2,2,N)' ; P = zeros(N,M) ; P(:,1) = ones(N,1) ; P(:,2) = -x + ones(N,1) ; for m = 3:M     P(:,m) = ((2*(m-2)+1-x).*P(:,m-1)-(m-2)*P(:,m-2))./(m-1) ; end end  function [P] = hermite_p(N,M)  % 本函数生成N*M的埃尔米特基矩阵 x = linspace(-2,2,N)' ; P = zeros(N,M) ; P(:,1) = ones(N,1) ; P(:,2) = 2*x ;  for m = 2:M     P(:,m+1) = 2*x.*P(:,m) - 2*(m-1)*P(:,m-1) ; end end 

更多精彩内容请
优化与算法资料部分资料来自网络,侵权毕设源码联系删除

区块链毕设网(www.qklbishe.com)全网最靠谱的原创区块链毕设代做网站
部分资料来自网络,侵权联系删除!
资源收费仅为搬运整理打赏费用,用户自愿支付 !
qklbishe.com区块链毕设代做网专注|以太坊fabric-计算机|java|毕业设计|代做平台 » 优化与算法资料

提供最优质的资源集合

立即查看 了解详情