关于HDFS,说法正确是-笔试面试资料

这是qklbishe.com第16479 篇笔试面试资料
提供答案分析,通过本文《关于HDFS,说法正确是-笔试面试资料》可以理解其中的代码原理,这是一篇很好的求职学习资料
本站提供程序员计算机面试经验学习,笔试经验,包括字节跳动/头条,腾讯,阿里,美团,滴滴出行,网易,百度,京东,小米,华为,微软等互联网大厂真题学习背诵。

答案:
关于HDFS,说法正确是

关于HDFS,说法正确是 羽翼散
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。 1. Secondary NameNode 原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image 优点:Hadoop较早的版本都自带,配置简单,基本不需要额外资源(可以与datanode共享机器) 缺点:恢复时间慢,会有部分数据丢失 2. Backup NameNode 原理:backup NN实时得到editlog,当NN宕掉后,手动切换到Backup NN; 优点:从hadoop0.21开始提供这种方案,不会有数据的丢失 缺点:因为需要从DataNode中得到Block的location信息,在切换到Backup NN的时候比较慢(依赖于数据量) 3. Avatar NameNode 原理:这是Facebook提供的一种HA方案,将client访问hadoop的editlog放在NFS中,Standby NN能够实时拿到editlog;DataNode需要同时与Active NN和Standby NN report block信息;  优点:信息不会丢失,恢复快(秒级) 缺点:Facebook基于Hadoop0.2开发的,部署起来稍微麻烦;需要额外的机器资源,NFS成为又一个单点(不过故障率低) 4. Hadoop2.0直接支持StandBy NN,借鉴Facebook的Avatar,然后做了点改进  优点:信息不会丢失,恢复快(秒级),部署简单 详细介绍Hadoop NameNode单点问题解决方案之一 AvatarNode 需求: 实现namenode元数据的备份,解决namenode单点宕机导致集群不可用的问题。 方案描述: 当namenode所在服务器宕机的时候,我们可以利用namenode备份的元数据迅速重构新的namenode来投入使用。 1. Hadoop本身提供了可利用secondarynamenode的备份数据来恢复namenode的元数据的方案,但因为checkpoint(在每次 checkpoint的时候secondarynamenode才会合并并同步namenode的数据)的问题,secondarynamenode的备份数据并不能时刻保持与namenode同步,也就是说在namenode宕机的时候secondarynamenode可能会丢失一段时间的数据,这段 时间取决于checkpoint的周期。我们可以减小checkpoint的周期来减少数据的丢失量,但由于每次checkpoint很耗性能,而且这种方案也不能从根本上解决数据丢失的问题。所以如果需求上不允许这种数据的丢失,这种方案可直接不予考虑。 2. Hadoop提供的另一种方案就是NFS,一种即时备份namenode元数据的方案,设置多个data目录(包括NFS目录),让namenode在持 久化元数据的时候同时写入多个目录,这种方案较第一种方案的优势是能避免数据的丢失(这里我们暂时不讨论NFS本身会丢失数据的可能性,毕竟这种几率很小 很小)。既然可以解决数据丢失的问题,说明这套方案在原理上是可行的 下载源码 https://github.com/facebook/hadoop-20 部署环境 机器4台 hadoop1-192.168.64.41 AvatarNode(primary) hadoop2-192.168.64.42 AvataDataNode hadoop3-192.168.64.43 AvataDataNode hadoop4- 192.168.64.67 AvatarNode(standby) 相关资源及描述 以下是Avatar方案部署相关的简单介绍。 1.首先关于Avatar方案对于Hadoop的备份是对Dfs的的单点备份,并不包括Mapred,因为Hadoop本身就不存在处理jobtracker单点故障的机制。 2.AvatarNode继承自Namenode,而并非对Namenode的修改,AvatarDataNode同样亦如此。故Avatar的启动机制是独立于Hadoop本身的启动机制。 3.在Avatar方案中,SecondaryNamenode的职责已包括在Standby节点中,故不需要再独立启动一个SecondaryNamenode。 4.AvatarNode必须有NFS的支持,用以实现两个节点间事务日志(editlog)的共享。 5.FB提供的Avatar源码中暂时并不能实现Primary和Standby之间的自动切换,可以借助于Zookeeper的lease机制来实现自动切换。 6.Primary和Standby之间的切换只包括从Standby切换到Primary,并不支持从Primary状态切换到Standby状态。 7.AvatarDataNode并不使用VIP和AvatarNode通信,而是直接与Primary及Standby通信,故需要使用VIP漂移方案来屏蔽两个节点间切换过程中的IP变换问题。有关与Zookeeper的整合,官方称将在之后的版本发布。 关于AvatarNode更详细的介绍,请参考 http://blog.csdn.net/rzhzhz/article/details/7235789, 三、编译 1. 首先修改hadoop根目录下build.xml,注释掉996行和1000行。如下: <targetname> </targetname> <target name="java5&#46;check" unless="java5&#46;home"> </target> 2. 在根目录下输入ant jar(对于编译package可以参考build.xml的代码)编译hadoop,编译后的jar包会在build目录下(hadoop-0.20.3-dev-core.jar), 拷贝该jar包到hadoop根目录下替换到原有的jar (啰嗦一句,hadoop启动时会先加载build目录下的class,所以当通过替换class修改jar包时请先把build目录暂时移除掉) 。 3. 进入src/contrib/highavailability目录下编译Avatar,编译后的jar包会在build/contrib/highavailability目录下(hadoop-${version}-highavailability.jar),拷贝该jar包到lib目录下。 4. 把2,3步中编译好的jar包分发到集群中所有机器的相应目录。 四、配置 1. 配置hdfs-site.xml <configuration> <property> <name>dfs.name.dir</name> <value>/data/hadoop/hdfs/name</value> <description>Determineswhereon the local filesystem the DFS name node shouldstore the name table. Ifthis is a comma-delimited list ofdirectories then the name tableis replicated in all of thedirectories, for redundancy </description> </property> <property> <name>dfs.data.dir</name> <value>/data/hadoop/facebook_hadoop_data/hdfs/data</value> </property> <property> <name>dfs.datanode.address</name> <value>0.0.0.0:50011</value> <description>默认为50010, 是datanode的监听端口</description> </property> <property> <name>dfs.datanode.http.address</name> <value>0.0.0.0:50076</value> <description>默认为50075,为datanode的http server端口</description> </property> <property> <name>dfs.datanode.ipc.address</name> <value>0.0.0.0:50021</value> <description>默认为50020, 为datanode的ipc server端口</description> </property> <property> <name>dfs.http.address0</name> <value>192.168.64.41:50070</value> </property> <property> <name>dfs.http.address1</name> <value>192.168.64.67:50070 </value> </property> <property> <name>dfs.name.dir.shared0</name> <value>/data/hadoop/share/shared0</value> </property> <property> <name>dfs.name.dir.shared1</name> <value>/data/hadoop/share/shared1</value> </property> <property> <name>dfs.name.edits.dir.shared0</name> <value>/data/hadoop/share/shared0</value> </property> <property> <name>dfs.name.edits.dir.shared1</name> <value>/data/hadoop/share/shared1</value> </property> <property> <name>dfs.replication</name> <value>2</value> <description> Defaultblock replication. The actual number of replicationscan bespecified when the file is created. The default isused ifreplicationis not specified in create time </description> </property> </configuration> 参数说明: 1) dfs.name.dir.shared0 AvatarNode(Primary)元数据存储目录,注意不能和dfs.name.dir目录相同 2) dfs.name.dir.shared1 AvatarNode(Standby)元数据存储目录,注意不能和dfs.name.dir目录相同 3) dfs.name.edits.dir.shared0 AvatarNode(Primary) edits文件存储目录,默认与 dfs.name.dir.shared0一致 4) dfs.name.edits.dir.shared1 AvatarNode(Standby) edits文件存储目录,默认与 dfs.name.dir.shared1一致 5) dfs.http.address0 AvatarNode(Primary) HTTP的监控地址 6) dfs.http.address1 AvatarNode(Standby) HTTP的监控地址 7) dfs.namenode.dn-address0/dfs.namenode.dn-address1 虽然在Avatar源码中有所涉及,但暂时并未用到 2. 配置core-site.xml <configuration> <property> <name>hadoop.tmp.dir</name> <value>/home/hadoop/tmp</value> <description>A baseforother temporary directories. </description> </property> <property> <name>fs.default.name</name> <value>hdfs://192.168.64.41:9600</value> <description>The name ofthedefault file system. Eitherthe literal string"local" or a host:port for DFS. </description> </property> <property> <name>fs.default.name0</name> <value>hdfs://192.168.64.41:9600</value> <description>The name ofthedefault file system. Eitherthe literal string"local" or a host:port for DFS. </description> </property> <property> <name>fs.default.name1</name> <value>hdfs://192.168.64.67:9600</value> <description>The name ofthedefault file system. Eitherthe literal string"local" or a host:port for DFS. </description> </property> </configuration> 参数说明: 1) fs.default.name 当前AvatarNode IP地址和端口号,即Primary和Standby的配置为各自的IP地址和端口号。 2) fs.default.name0 AvatarNode(Primary) IP地址和端口号 3) fs.default.name1 AvatarNode(Standby) IP地址和端口号 3. 因为不涉及到mapred,故mapred-site.xml不用作修改,为原有集群配置即可。 4. 分发修改后的配置文件到集群节点并在Primary和Standby节点上建立好配置文件中相应目录。 5. 建立NFS,实现Primary与Standby shared0目录的数据共享。有关NFS的配置请参考 http://blog.csdn.net/rzhzhz/article/details/7056732 6. 格式化Primary与Standby,这里可以采用hadoop本身的格式化命令,也可以采用AvatarNode的格式化命令(bin/hadooporg.apache.hadoop.hdfs.AvatarShell -format),但此时shared1目录不能为空,此处有点多余。建议采用hadoop本身的格式化命令在Primary上格式化后,并且把name目录下的文件复制到shared0目录下。然后再在Standby上复制shared0目录下的文件到shared1目录下。 五、启动 1. 由于不涉及jobtracker的单点,在这里我们只启动hdfs相关线程。Primary,Standby两个namenode(此处Standby包括SecondaryNamenode的职责)和3个AvatarDataNode数据节点。 2. 在Primary节点hadoop根目录下启动AvatarNode(Primary) bin/hadooporg.apache.hadoop.hdfs.server.namenode.AvatarNode–zero 3. 在Standby节点hadoop根目录下启动AvatarNode(Standby) bin/hadooporg.apache.hadoop.hdfs.server.namenode.AvatarNode-one–standby 4. 依次在数据节点hadoop根目录下启动AvatarDataNode bin/hadooporg.apache.hadoop.hdfs.server.datanode.AvatarDataNode 5. 其他相关命令 bin/hadoop org.apache.hadoop.hdfs.server.namenode.AvatarNode,后面可 选参数有 [-standby] | [-sync] |[-zero] | [-one] | [-format] | [-upgrade] | [-rollback] |[-finalize] | [-importCheckpoint] ##查看当前AvatarNode的状态 1) bin/hadoop org.apache.hadoop.hdfs.AvatarShell –showAvatar ##primary 把当前Standby节点升级Primary节点 2) bin/hadooporg.apache.hadoop.hdfs.AvatarShell -setAvatar 3) bin/hadooporg.apache.hadoop.hdfs.AvatarShell -setAvatar standby 集群测试 1. 访问集群的web页 (Primary)http://hadoop1-virtual-machine:50070 (Standby)http://hadoop5-virtual-machine:50070 可见所有的AvatarDataNode都已注册到两个namenode,Primary处于正常状态,而Standby处于Safemode状态,只可读不可写。可通过AvatarShell命令查看当前AvatarNode的状态(Primary或Standby)。 2. 存储相关数据到集群,集群正常工作。 3. Kill掉Primary节点的AvatartNode线程,在Standby把当前升级为Prirmary,数据并未丢失,集群正常工作(此时web端不能正常访问文件系统,通过shell命令可查看集群数据)。但由于Avatar有转换限制,只能由Standby转换成Primary,故一次故障后,由Standby上升为Primary的节点并不能重新降级为Standby,所以不能实现像Master/Slave那种自由切换。
2021-09-22 23:39:46 回复(0)

文章部分来自互联网,侵权联系删除
www.qklbishe.com

区块链毕设网(www.qklbishe.com)全网最靠谱的原创区块链毕设代做网站
部分资料来自网络,侵权联系删除!
资源收费仅为搬运整理打赏费用,用户自愿支付 !
qklbishe.com区块链毕设代做网专注|以太坊fabric-计算机|java|毕业设计|代做平台 » 关于HDFS,说法正确是-笔试面试资料

提供最优质的资源集合

立即查看 了解详情