我们知道二元分类的输出是概率值。一般设定输出概率大于或等于0.5,则预测为正类;若输出概率小于 0.5,则预测为负类。那么,如果将阈值 0.5 提高,例如 0.6,大于或等于 0.6 的才预测为正类。则准确率(Precision)和召回率(Recall)会发生什么变化?-笔试面试资料

这是qklbishe.com第15531 篇笔试面试资料
提供答案分析,通过本文《我们知道二元分类的输出是概率值。一般设定输出概率大于或等于0.5,则预测为正类;若输出概率小于 0.5,则预测为负类。那么,如果将阈值 0.5 提高,例如 0.6,大于或等于 0.6
的才预测为正类。则准确率(Precision)和召回率(Recall)会发生什么变化?-笔试面试资料》可以理解其中的代码原理,这是一篇很好的求职学习资料
本站提供程序员计算机面试经验学习,笔试经验,包括字节跳动/头条,腾讯,阿里,美团,滴滴出行,网易,百度,京东,小米,华为,微软等互联网大厂真题学习背诵。

答案:

我们知道二元分类的输出是概率值。一般设定输出概率大于或等于0.5,则预测为正类;若输出概率小于 0.5,则预测为负类。那么,如果将阈值 0.5 提高,例如 0.6,大于或等于 0.6
的才预测为正类。则准确率(Precision)和召回率(Recall)会发生什么变化?

我们知道二元分类的输出是概率值。一般设定输出概率大于或等于0.5,则预测为正类;若输出概率小于 0.5,则预测为负类。那么,如果将阈值 0.5 提高,例如 0.6,大于或等于 0.6   的才预测为正类。则准确率(Precision)和召回率(Recall)会发生什么变化? 区块链毕设学生732315137号
首先来看一下什么是准确率和召回率,下面分别用 P 和 R 代表。以一个简单的例子来说明,例如预测 20 个西瓜中哪些是好瓜,这 20 个西瓜中实际有 15 个好瓜,5 个坏瓜。某个模型预测的结果是:16 个好瓜,4 个坏瓜。其中,预测的 16 个好瓜中有 14 个确实是好瓜,预测的 4 个坏瓜中有 3 个确实是坏瓜。下面以一张图表说明:

这样,准确率 P 的定义是:

P=TPTP+FP
P=TPTP+FP
可以理解为预测好瓜中,确实是好瓜的比例。该例子中 P = 14/(14+2)。

召回率 R 的定义是:

R=TPTP+FN
R=TPTP+FN
可以理解为真实的好瓜被预测出来的比例。该例子中 R = 14/(14+1)。

现在,如果二元分类阈值提高,相当于判定好瓜的标准更严格了。所以可能会造成预测是好瓜的数目减少,即 TP 和 FP 均减小。因此准确率可能会增加,极端的,苛刻条件,只预测一个是好瓜,那该瓜是好瓜的概率会很大,即准确率很高。但是 15 个好瓜你只挑出来 1 个,召回率就降低了。

准确率和召回率都不能很好地反映模型性能,通常使用 F1 score 来作为模型预测水平判据。F1 Score 被定义为准确率和召回率的调和平均数。,如下所示:

F1=2⋅P⋅RP+R

今天 14:23:37 回复(0)

文章部分来自互联网,侵权联系删除
www.qklbishe.com

区块链毕设网(www.qklbishe.com)全网最靠谱的原创区块链毕设代做网站
部分资料来自网络,侵权联系删除!
资源收费仅为搬运整理打赏费用,用户自愿支付 !
qklbishe.com区块链毕设代做网专注|以太坊fabric-计算机|java|毕业设计|代做平台 » 我们知道二元分类的输出是概率值。一般设定输出概率大于或等于0.5,则预测为正类;若输出概率小于 0.5,则预测为负类。那么,如果将阈值 0.5 提高,例如 0.6,大于或等于 0.6 的才预测为正类。则准确率(Precision)和召回率(Recall)会发生什么变化?-笔试面试资料

提供最优质的资源集合

立即查看 了解详情